important feature of this structure is the formation of hydrogen bonds between the carbonyl O atom O10, and the O2', C2' and C8 atoms (Desiraiu, 1996).

Experimental

The title compound was obtained from the Sigma Chemical Company. Crystals were grown by evaporation of a solution of the compound in dimethylformamide.

Crystal data

$C_{18}H_{19}N_5O_6\cdot H_2O$	Cu $K\alpha$ radiation
$M_r = 419.40$	$\lambda = 1.5418$ Å
Monoclinic	Cell parameters from 25
<i>P</i> 2 ₁	reflections
a = 9.412(2) Å	$\theta = 8-25^{\circ}$
b = 6.914(1) Å	$\mu = 0.994 \text{ mm}^{-1}$
c = 14.667 (2) Å	T = 293 (2) K
$\beta = 102.89 (2)^{\circ}$	Plate
$V = 930.4(3) \text{ Å}^3$	$0.80\times0.20\times0.05$ mm
<i>Z</i> = 2	Colourless
$D_x = 1.497 \text{ Mg m}^{-3}$	
D_m not measured	

every 100 reflections intensity decay: none

Data collection

Enraf–Nonius CAD-4	$R_{\rm int} = 0.021$
diffractometer	$\theta_{\rm max} = 72.90^{\circ}$
ω -2 θ scans	$h = 0 \rightarrow 11$
Absorption correction: none	$k = 0 \rightarrow 8$
2367 measured reflections	$l = -18 \rightarrow 17$
2026 independent reflections	3 standard reflections
1948 reflections with	every 100 reflection
$I > 2\sigma(I)$	intensity decay: no

Refinement

Refinement on F^2	$\Delta q_{m} = 0.303 \text{ e} \text{ Å}^{-3}$
$R[F^2 > 2\sigma(F^2)] = 0.036$	$\Delta \rho_{\text{max}} = -0.186 \text{ e}^{-3}$
R[I > 20(I)] = 0.050 $mP(F^2) = 0.102$	$\Delta p_{\min} = -0.100 \text{ C A}$
WR(F) = 0.102	Extinction confection.
S = 1.009	SHELXL93 (Sheldrick,
2026 reflections	1993)
301 parameters	Extinction coefficient:
H atoms treated by a	0.0120 (17)
mixture of independent	Scattering factors from
and constrained refinement	International Tables for
$w = 1/[\sigma^2(F_o^2) + (0.1P)^2]$	Crystallography (Vol. C)
where $P = (F_o^2 + 2F_c^2)/3$	Absolute structure: Flack
$(\Delta/\sigma)_{\rm max} = 0.004$	(1983)
	Flack parameter = 0.15 (21)

Table 1. Selected torsion angles (°)

C4—N9—C1'—O4'	-68.1 (2)	C2'C1'O4'C4'	-16.9 (2)
04'-C1'-C2'-C3'	35.3 (2)	C3' - C4' - O4' - C1'	-9.0(2)
C1'-C2'-C3'-C4'	-39.1 (2)	O4'-C4'-C5'-O5'	173.1 (2)
C2' - C3' - C4' - O4'	30.6 (2)	C3'-C4'-C5'-O5'	-69.2 (2)

Data collection: CAD-4 Software (Enraf-Nonius, 1989). Data reduction: CAD-4 Software. Program(s) used to solve structure: SIR97 (Altomare et al., 1997). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: Xtal_GX (Hall & du Boulay, 1995). Software used to prepare material for publication: SHELXL93.

We thank DST and CSIR, India, for financial assistance.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: VJ1092). Services for accessing these data are described at the back of the journal.

References

- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Burla, M. C., Polidori, G., Camalli, M. & Spagna, R. (1997). SIR97. A Package for Crystal Structure Solution by Direct Methods and Refinement. University of Bari, Italy.
- Altona, C. & Sundaralingam, M. (1972). J. Am. Chem. Soc. 94, 8205-8212.
- Desiraju, G. R. (1996). Acc. Chem. Res. 29, 441-449.
- Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Hall, S. R. & du Boulay, D. (1995). Xtal_GX. University of Western Australia, Australia.
- Krishnan, R. & Seshadri, T. P. (1993). J. Biomol. Struct. Dyn. 10, 727-745.
- Krishnan, R. & Seshadri, T. P. (1994). Biopolymers, 34, 1637-1646. Padiyar, G. S. & Seshadri, T. P. (1996). Nucleosides Nucleotides, 15, 857-865.
- Padiyar, G. S. & Seshadri, T. P. (1998). J. Biomol. Struct. Dyn. 15, 793-802, 803-821.
- Saenger, W. (1984). Principles of Nucleic Acid Structures, edited by C. R. Cantor, pp. 16-24. New York: Springer-Verlag.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.

Acta Cryst. (1999). C55, 604-606

N³-Benzoyl-2',3'-di-O-benzoyluridine

S. KOLAPPAN AND T. P. SESHADRI

Department of Physics, Indian Institute of Science, Bangalore 560 012. India. E-mail: seshadri@physics.iisc.ernet.in

(Received 2 June 1998; accepted 19 November 1998)

Abstract

The structure of N^3 -benzoyl-2',3'-di-O-benzoyluridine, $C_{30}H_{24}N_2O_9$, has two molecules in the asymmetric unit. The uracil bases of both the molecules are in the anti conformation with respect to the ribose moiety and the furanosyl rings adopt a C3'-endo conformation. The orientation about the C4'-C5' bond is gauche-gauche. The two crystallographically independent molecules are linked through several C—H···O hydrogen bonds. The nucleoside molecules pack as columns along the *a* axis and these columns repeat along the c axis.

Comment

The aim of the work is to study the effect of aromatic substituents on the structure of pyrimidine nucleosides and has been taken up as a sequel to our earlier studies

on modified purine nucleosides (Kolappan & Seshadri, 1999a). In the title compound, (I), the uracil bases are in the *anti* conformation with respect to the ribose moiety.

This contrasts with the syn geometry of the guanine base in 2',3',5'-tri-O-benzoylguanosine (Kolappan & Seshadri, 1999b). The furanosyl ring adopts a C3'-endo envelope pucker in both molecules A and B with pseudorotation angles of 10.6 and 15.7°, respectively. The maximum angles of pucker (Altona & Sundaralingam, 1972: Saenger, 1984) are 37.9 and 34.9° for A and B. respectively. The phenyl rings covalently linked to the uracil base at N3 are inclined at 74.5 and 86.9° to it. The phenyl rings at O2' and O3' are oriented at 51.5 and 75.5° with respect to each other and are separated by 6.8 and 5.7 Å in A and B, respectively. This is similar to the geometry seen in 2', 3', 5'-tri-O-benzoylguanosine and inosine (Kolappan & Seshadri, 1998c). The two nucleoside molecules A and B in the asymmetric unit are linked by several weak hydrogen bonds (Desiraiu, 1996). The phenyl rings at O2' in the two molecules overlap at a separation of 3.7 Å. Nucleoside molecules pack as columns along the *a* axis and these columns repeat along the c axis. Also, there is partial overlapping of phenyl rings at O3' at a separation of 3.78 Å along the *a* axis.

Fig. 1. The molecular structure of (I) showing 50% probability displacement ellipsoids. H atoms are omitted for clarity.

$C_{30}H_{24}N_2O_9$

Experimental

The title compound was obtained from the Sigma Chemical Company. Crystals were grown by the diffusion method from an aqueous acetonitrile solution of the compound.

Crystal data

Cu $K\alpha$ radiation C₃₀H₂₄N₂O₉ $M_r = 556.51$ $\lambda = 1.5418 \text{ Å}$ Monoclinic Cell parameters from 25 P2 reflections a = 14.202(2) Å $\theta = 10 - 25^{\circ}$ b = 5.737(3) Å $\mu = 0.855 \text{ mm}^{-1}$ c = 33.319(5) Å T = 293 (2) K $\beta = 92.93 (2)^{\circ}$ Plate $V = 2711.5 (15) \text{ Å}^3$ $0.90\,\times\,0.20\,\times\,0.05$ mm Colourless Z = 4 $D_x = 1.363 \text{ Mg m}^{-3}$ D_m not measured

Data collection

 $R_{\rm int} = 0.032$ Enraf-Nonius CAD-4 $\theta_{\rm max} = 69.9^{\circ}$ diffractometer ω -2 θ scans $h = 0 \rightarrow 16$ $k = 0 \rightarrow 6$ Absorption correction: none 6192 measured reflections $l = -40 \rightarrow 40$ 5536 independent reflections 3 standard reflections 4265 reflections with every 100 reflections $I > 2\sigma(I)$ intensity decay: none

Refinement

Refinement on F^2	Extinction correction:
$R[F^2 > 2\sigma(F^2)] = 0.041$	SHELXL93 (Sheldrick,
$wR(F^2) = 0.117$	1993)
S = 1.055	Extinction coefficient:
5491 reflections	0.0016 (3)
789 parameters	Scattering factors from
H atoms constrained	International Tables for
$w = 1/[\sigma^2(F_o^2) + (0.1P)^2]$	Crystallography (Vol. C)
where $P = (F_o^2 + 2F_c^2)/3$	Absolute structure: Flack
$(\Delta/\sigma)_{\rm max} = 0.009$	(1983)
$\Delta \rho_{\rm max} = 0.278 \ {\rm e} \ {\rm \AA}^{-3}$	Flack parameter = 0.15 (22)
$\Delta \rho_{\rm min} = -0.235 \ {\rm e} \ {\rm \AA}^{-3}$	-

Table 1. Selected torsion angles (°)

C2A - N1A - C1'A - O4'A	-154.8 (3)
O4'A - C1'A - C2'A - C3'A	-27.1(3)
C1'A_C2'A_C3'A_C4'A	37.5 (3)
C2'A - C3'A - C4'A - O4'A	-35.1(3)
C2'A - C1'A - O4'A - C4'A	5.5 (3)
C3'A - C4'A - O4'A - C1'A	18.9 (3)
04'A—C4'A—C5'A—O5'A	-60.8 (4)
C3'A—C4'A—C5'A—O5'A	56.7 (4)
C2B—N1B—C1'B—O4'B	-156.8 (3)
O4'B - C1'B - C2'B - C3'B	-22.7 (3)
C1'B - C2'B - C3'B - C4'B	34.1 (3)
C2'B - C3'B - C4'B - O4'B	-34.1 (3)
C2'B—C1'B—O4'B—C4'B	1.5 (3)
C3'B - C4'B - O4'B - C1'B	20.8 (3)
O4' <i>B</i> —C4' <i>B</i> —C5' <i>B</i> —O5' <i>B</i>	-62.3 (4)
C3'B—C4'B—C5'B—O5'B	55.4 (4)

Data collection: CAD-4 Software (Enraf-Nonius, 1989). Data reduction: CAD-4 Software. Program(s) used to solve struc-

ture: *SHELXS*86 (Sheldrick, 1990). Program(s) used to refine structure: *SHELXL*93 (Sheldrick, 1993). Molecular graphics: *INSIGHTII* (Biosym Technologies, 1995) and *Xtal_GX* (Hall & du Boulay, 1995). Software used to prepare material for publication: *SHELXL*93.

We thank DST and CSIR, India, for financial assistance.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: VJ1093). Services for accessing these data are described at the back of the journal.

References

- Altona, C. & Sundaralingam, M. (1972). J. Am. Chem. Soc. 94, 8205-8212.
- Biosym Technologies (1995). INSIGHTII. Biosym Technologies, San Diego, California, USA.
- Desiraju, G. R. (1996). Acc. Chem. Res. 29, 441-449.
- Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Hall, S. R. & du Boulay, D. (1995). Xtal_GX. University of Western Australia, Australia.
- Kolappan, S. & Seshadri, T. P. (1999a). Acta Cryst. C55, 603-604.
- Kolappan, S. & Seshadri, T. P. (1999b). In preparation.
- Kolappan, S. & Seshadri, T. P. (1999c). Acta Cryst. C55. In the press.
- Saenger, W. (1984). Principles of Nucleic Acid Structures, edited by C. R. Cantor, pp. 16-24. New York: Springer-Verlag.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.

Acta Cryst. (1999). C55, 606-608

2'-O-Tosyladenosine

D. PRAHADEESWARAN AND T. P. SESHADRI

Department of Physics, Indian Institute of Science, Bangalore 560 012, India. E-mail: seshadri@physics.iisc.ernet.in

(Received 30 April 1998; accepted 19 November 1998)

Abstract

In the title compound, 2'-O-tosyl(toluenesulfonyl)adenosine, $C_{17}H_{19}N_5O_6S$, the adenine base is in the *syn* conformation with a glycosidic torsion angle of $62.7 (4)^\circ$. The ribose sugar adopts the envelope conformation (²*E*). The tosyl moiety is nearly parallel to the base. Both Watson–Crick and Hoogsteen sites of the adenine bases are involved in intermolecular hydrogen bonds.